Deformations and Fourier-Mukai transforms

نویسنده

  • Yukinobu Toda
چکیده

The aim of this paper is the following: Firstly give the explicit constructions of the infinitesimal deformation of Coh(X). Here X is a smooth projective variety. Secondly we show the Fourier-Mukai transform Φ: D(X) → D(Y ) extends to an equivalence between the derived categories of the deformed categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Fourier-Mukai transforms for holomorphic symplectic fourfolds

We apply the methods of Căldăraru to construct a twisted FourierMukai transform between a pair of holomorphic symplectic four-folds. More precisely, we obtain an equivalence between the derived category of coherent sheaves on a certain four-fold and the derived category of twisted sheaves on its ‘mirror’ partner. As corollaries, we show that the two spaces are connected by a one-parameter famil...

متن کامل

Semi-homogeneous Sheaves, Fourier-mukai Transforms and Moduli of Stable Sheaves on Abelian Surfaces

This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper al...

متن کامل

A Problem List for Compact Hyperkähler Manifolds

In his thesis, Caldararu described twisted Fourier-Mukai transforms for elliptic fibrations. In this talk I will describe how certain holomorphic symplectic manifolds can be deformed to integrable systems, i.e. fibrations by abelian varieties. These are higher dimensional analogues of elliptic K3 surfaces, and twisted Fourier-Mukai transforms

متن کامل

Fourier-mukai Transforms for Abelian Varieties and Moduli of Stable Bundles

We classify Fourier-Mukai transforms for abelian varieties. In the case of a principally polarized abelian surface these are then used to identify a large family of moduli spaces of stable vector bundles as Hilbert schemes of points on the surface.

متن کامل

Holonomic D-modules on Abelian Varieties

We study the Fourier-Mukai transform for holonomic D-modules on complex abelian varieties. Among other things, we show that the cohomology support loci of a holonomic D-module are finite unions of linear subvarieties, which go through points of finite order for objects of geometric origin; that the standard t-structure on the derived category of holonomic complexes corresponds, under the Fourie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005